
ftft-oio-ass

Software Instrument Control Suite

David Clarke

DSTO-GD-0156

APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

flHß QUALITY INSPECTED |

DEPARTMENTOF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Software Instrument Control Suite

David Clarke

Maritime Operations Division
Aeronautical and Maritime Research Laboratory

DSTO-GD-0156

ABSTRACT

The use of computers to control instrumentation can provide improvements in quality,
quantity and turn around time of work carried out by a laboratory. These
improvements must be balanced against the time taken to write the programs that
control the instruments. This work documents a library of instrument control routines
used to facilitate the task of programming and to enable the full advantage of
computer controlled instrumentation to be realised.

19980122 036
RELEASE LIMITATION

Approved for public release

DTIC QUALITY INSPECTED 3

DEPARTMENT OF DEFENCE

 ♦
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Published by

DSTO Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Victoria 3001

Telephone: (03)9626 7000
Fax: (03) 9626 7999
© Commonwealth of Australia 1997
AR-010-355
October 1997

APPROVED FOR PUBLIC RELEASE

Software Instrument Control Suite

Executive Summary

This document details the software library and control system written for the
instruments used in controlling and recording data at the magnetic volume (a region
in which the magnetic field may be controlled) at the Maritime Operations Division
Maribyrnong.

Computer controlled experiments can have a very positive effect on the quality,
quantity and turn around time of work carried out by a laboratory. The increase in
quality is achieved as the computer controlled experiments, once set up correctly, will
help eliminate errors due to carelessness and fatigue. An increase in efficiency can be
achieved by reducing the staff effort required to run and produce primary data from
the experiment. There will also be a reduction in the time taken to set up parameters in
an existing experimental arrangement. This reduction in time required to run the
experiments must be balanced against the time taken to write the software to run an
experiment.

The process of setting up a computer controlled experiment can often be time
consuming and frustrating as many instruments have large programming manuals
and strange undocumented idiosyncrasies that are generally only discovered through
trial and error.

This report provides a library of routines for a number of instruments. This means that
the programmer no longer has to "know" the instrument inside out, just what he
wants it to do. As an example, if he wants to check that an instrument is functioning
correctly he just runs a procedure poll and it will notify him if there is a problem. He
does not need to now the GPIB address of the instrument or what each bit in the status
byte means. That work is already done. These modules will open the programming of
experiments up to a wider group of people as the person writing a test procedure will
no longer need to be f amiliar with the programming of the instrument.

The Software Instrument Control Suite currently allows for the use of five different
instruments, additional instruments may be added if required.

A user interface has also been provided so basic settings of the instrument can be
changed without altering the program. This facility allows non programmers to run an
experiment and to make minor changes to tailor the experiment to individual tests.

Contents

1. INTRODUCTION 1

2. BASIC INSTRUMENT OBJECTS 1
2.1 CommandSet Object 2

2.1.1 Fields 2
2.1.2 Methods 2

2.2 GPIB Bus Object 3
2.2.1 Fields 3
2.2.2 Methods 3

2.3 GPIB Bus Version 2 Object. 4
2.3.1 Fields 4
2.3.2 Methods 4

3. TEKTRONIX TDS420CRO 4
3.1 Fields 5

3.2 Methods 6

4. HEWLETT PACKARD 33102 AFG 8
4.1 Fields 8

4.2 Methods 9

5. HEWLETT PACKARD 34401 DMM 10
5.1 Fields 10
5.2 Methods 10

6. HEWLET PACKARD 3478 DMM 11
6.1 Methods 12

7. FLUKE 8840 DMM 12
7.1 Methods 13

8. TEKTRONIX 8150 TSI 13
8.1 Methods 14

9. UNITS 14
9.1 Variable.pas 14
9.2 Messagcpas 15
9.3 tpdecLpas 15
9.4 GPIBwrtpas 15
9.5 Ins_Obje.pas 16
9.6 GPIB2INS.pas 16
9.7TekCRO.pas 17
9.8HPAFG.pas 17
9.9 HP34401.pas 17
9.10 HP3478.pas 18
9.11 F8840.pas 18
9.12TekTSI.pas 18

10. EXAMPLE 19

11. DIALOG BOXES 20
ll.lTManager 20

11.1.1 Fields "!.ZZZZZ""""Z"20
11.1.2 Methods 21

12. MAIN MENU 22

13. REFERENCE 23

APPENDIX A SOFTWARE DESIGN INFORMATION 25

1. Introduction

This library of routines is written to facilitate the creation of computer controlled
experiments. To complement this library a series of dialog boxes have been created.
These dialog boxes allow the change of device settings from the keyboard without
altering the program. The dialog boxes provide the facility to set up to four sets of
commands for each device. The commands are tested for range and syntax errors
before a routine converts the information into a string format. Passage of information
from the dialog boxes to the instruments is via an array of strings called a
CommandSet. The dialog boxes write to the CommandSet and the software controlling
the devices reads the settings from the CommandSet. Currently the dialog boxes and
routines are available for the Tektronix TDS 420 CRO, Hewlett Packard 33120 AFG,
Hewlett Packard 34401 DMM, Hewlett Packard 3478 DMM and Fluke 8840 DMM. A
series of routines are also available for the Tektronix 8150 Test Interface System. The
Borland Pascal language Version 7 is used for these routines. The following chapters
provide reference material for the instrument control suite.

2. Basic Instrument Objects

The software control of the devices is organised in an object orientated framework.
This enables elements of the device control that are similar to be inherited from
common ancestors. As an example all the devices obtain their settings from a
CommandSet so all the devices have a common ancestor TCommandSet. The
instruments controlled via the IEEE 488 Bus have many common features so they are
descendants of TBus which in turn is a descendant of TCommandSet. Using an object
orientated framework an efficient controller can be built with common features being
inherited from already existing objects (Figure 1). The software for the objects is
compiled into a number of units. A listing for the units (Section 9) follows the objects
outlined below. The field types used with the objects are declared in the unit listing.
Sections 2 to 9 provide information on the software in this instrument control suite.
After examining Figure 1 it is probably most informative to look at the example in
Section 10. Examine what the methods in this example are doing by looking up the
methods in Sections 2 and 3.

Figure 1 - Object Inheritance

2.1 CommandSet Object

Unit:- Ins_obje

TCommandSet provides the fields and methods that identify each device and its
instruction set. Each instruction set can handle four different setups for each
instrument.

2.1.1 Fields

dev_name : nstring; :-Device Identifier.

commandset: array[1..4,1..4] of io_string; :- Instruction set, usually set through dialog
boxes for each device.

2.1.2 Methods

constructor Init(init_dev_name: nstring); :-Initialises object. init_dev_name is the device
identified.

procedure Zero_CommandSet; :- sets each commandset variable to empty.

procedure Read_CommandSet; :-Reads commandset variables from file.

destructor Done; :-Disposes of object.

2.2 GPIB Bus Object

Unit:- Ins_obje

TBus provides fields and methods required by instruments that use the IEEE 488 Bus.
715MS is a descendent of the TCommandSet Object.

2.2.1 Fields

pri: integer; :- Primary Address of instrument used by the IEEE 488 Bus.

Statusbyte: byte; :- Status byte as read from instrument.

PollResult: PollArray; :- Status byte in a more user friendly form, boolean array[0..7].

ins_reset: command; :- GPIB Instruction used to reset instrument to default settings.

2.2.2 Methods

constructor Init(init_dev_name : nstring; init_ins_reset: command); :-Initialises object.
init_dev_name is the device identifier, init_ins_reset is the instruction used to reset the
instrument.

procedure Initialise; :-Determines primary address of instrument on IEEE 488 Bus, pri.
Resets instrument to default settings using insjreset.

procedure Write_command(temp_command : io_string); :- Writes temp_command to
instrument at primary address.

procedure Write_CommandSet(i: integer); :-Writes one CommandSet to instrument, i
selects which of the four GommandSets to write.

procedure Serial_poll; :-Reads status byte from instrument at primary address and
places information in PollResult.

procedure trig; :- Uses the IEEE 488 GET command to trigger device at primary
address.

procedure error;:- Halts program execution (private).

procedure local; :-Returns instrument to local state using IEEE 488 GTL command.

destructor Done; :-Disposes of object.

2.3 GPIB Bus Version 2 Object

Unit :-GPIB2INS

TGPIB2 provides fields and methods suitable for instruments with the IEEE 488.2 Bus.
TGPIB2 uses features from the SCPI Instrument language. TGPIB2 is a descendent of
the TBus Object.

2.3.1 Fields

Event_Enable: string[2]; :-Stores Enable mask for Standard Event Register.

Status_Enable: string[2]; :- Stores Status mask for Status Register.

2.3.2 Methods

procedure Initialise; :-Runs TBus.Initialise and sets Status and Standard Event Register
masks.

procedure serial_poll; :-Conducts serial poll using SCPI command, stores result in
PollResult.

procedure QuestionableData; -.-Reports data from Questionable Data Register.

procedure StandardEvent; :-Reports data from Standard Event Register.

procedure poll; :-Uses Serialjpoll, QuestionableData and StandardEvent to do a full check
on device.

procedure Trigger; :-Triggers device using CPI trigger command.

function Read_Check; :-The SCPI Language ends its messages with a line feed
character. If this character is not read an error may occur. This procedure strips the
linefeed and subsequent characters. This function is used by other functions when
returning results from an instrument.

3. Tektronix TDS420 CRO

Unit:-TEKCRO

TTek_CRO provides fields and methods for use with the Tektronix TDS 420 CRO. This
instrument has four channels. TTekjCRO is a descendent of the TGPIB2 Object

Table 1 - Tektronix CRO Object Summary

TCommandSet TBus TGPIB2 TTekCRO

Init Init Initialise Init
Zero_CommandSet Initialise Serial_poll Sub_Get_Vertical_Scale
Read_CommandSet Write_Command QuestionableData Get_Vert_Scale
Done Write_CommandSet StandardEvent Get_Vert_Offset

Serial_poll Poll Get_Hori_Scale
trig Trigger Get_Trace_Start_Stop
error Get_Acquire_Mode
local Set_Data_Format
Done Start_Acquire

Acquire_Finished
Repeat_Until_Acquire_

Finished
Stop_Acquire
Sub_Read_Trace
Read_Trace
Store_Trace
NewVertScale
NewTimeBase
Return_Trace_Element
Return_Trace_Start
Return_Trace_Stop
Set_Display_Intensity
Read_CommandSet
Write_CommandSet
Done

Note: Bold indicates this method overwrites an inherited method.

3.1 Fields

CH_AUSelect: array[1..4] of SubSelect; :-Records the channels selected by each of the
four CommandSets.

CHSelect : SubSelect; :-Records the currently selected channels. Set by
WritejCommandSet.

TraceFilename : array[0..4] of string[80]; :-Records the filename to store the trace data
in for each of the four CommandSets. TraceFilename[0] contains the current
CommandSets TraceFilename, this is set by Write_CommandSet.

Trace_ptr : ATrace_Record; :-Pointer to variable used for storing the traces from the
CRO.

Vert_Scale : array[1..4] of Real; :-Stores vertical scaling factor (volts/point).

Vert_Offset: array[1..4] of Real; :-Stores vertical Offset (volts).

Hori_Scale : real; :-Stores horizontal scaling factor (seconds/point).

Bits_16 : boolean; :-Used to record if CRO output is in 8 or 16 bit mode.

Trace_Start: word; :-Records Trace start position.

Trace_Stop : word; :-Records Trace stop position.

counter: integer; :-Records number of points.

3.2 Methods

Constructor Init(init_dev_name: nstring); :-Initialize object, initialise Trace_ptr.

procedure Sub_Get_Vertical_Scale(i : integer); :-Places value of one vertical scale in
Vert_Scale. i selects which channel to obtain the scale from (Private).

procedure Get_Vert_Scale; :-Uses Sub_Get_Vertical-Scale to read the vertical scale from
all selected channels.

procedure Get_Vert_Offset; :-Reads the vertical offset from all selected channels.
Result stored in Vert_Offset.

procedure Get_Hori_Scale; :-Reads the horizontal scale of CRO. Result stored in
HoriJScale.

procedure Get_Trace_Start_Stop; :-Reads the start and stop position of the trace.
Result placed in Trace_Start and TracejStop respectively.

procedure Get_Acquire_Mode; :-Reads Acquire mode from CRO and determines if the
output data needs to be in an 8 or 16 bit format. Sets Bits_16 to true if output data
requires 16 bit format, false if 8 bit format required (private).

procedure Set_Data_Format; :-Determines required data format using
Get_Acquire_Mode. Sets CRO Data output format as required.

procedure Start_Acquire; :-Triggers CRO to start recording.

procedure Stop_Acquire; :-Stops CRO recording.

function Acquire_Finished; :-Uses the 'Busy?' query to determine if the signal
acquisition has completed.

procedure Repeat_UntU_Acquire_Finished(rriax_time : real); :-Repeats until signal
acquisition has completed or max_time has expired. max_time is the time out period in
seconds.

procedure Sub_Read_Trace(i : integer); :-Reads one Trace from the CRO. i selects
which of the traces to read (Private).

procedure Read_Trace; :-This procedure uses many of the preceding methods to read
all the selected traces from the CRO. This procedure will generally be used to read data
from the CRO. This procedure performs the following tasks:

- Determines the start and stop positions of the trace using Get_Trace_Start_Stop.
- Sets the data output format using SetJData_Format.
-Determines the vertical offset using Get_Vert_Offset.
-Determines the vertical scale using Get_Vert_Scate.
-Determines the horizontal scale using Get_Hori_Scak.
-Reads the trace from the four channels into the memory pointed to by Trace_ptr
using Sub_Read_Trace.

procedure Store_trace; :-This procedure saves the data in the memory pointed to by
Trace_ptr into the file specified by TraceFilename.

procedure NewTimeBase(seconds_per_division: real); :- Sets the time base of the CRO
to seconds_per_division.

procedure NewVertScale(channel: byte; volts_per_division); :-The vertical scale of one
channel of the CRO is set to volts_per_division. The channel to be altered is selected by
channel, channel to have any affect should have a value between 1 an 4 inclusive.

function Return_Trace_Element(channel: byte; i: word): integer; :-Returns the value
measured from the CRO and stored in the memory pointed to by
Trace_ptr. channel designates the channel of the CRO and i the position of the
reading.

function Return_Trace_Start : word; :- Returns the position of the first element in a
trace.

function Return_Trace_Stop : word; :- Returns the position of the last element in a
trace.

procedure Set_Display_Intensity(Percent: integer); :-Used to reduce the brightness of
the screen on long ninning tests when no operator is present.

procedure Read_CommandSet; :-Reads CommandSet using inherited Read_
CommandSet. Using information in the CommandSet it initialises CHAUSelect and
TraceFilename[1..4].

procedure Write_CommandSet(i: integer);:- Writes the selected CommandSet (1-4) to
the instrument, sets CHSelect and TraceTilename[0].

Destructor Done; :-Disposes of Trace jptr, disposes of object.

4. Hewlett Packard 33102 AFG

Unit:-HPAFG

THP_AFG provides fields and methods for use with the Hewlett Packard 33120 AFG.
This instrument produces one signal at a time. Either predefined, eg. sin, square etc, or
arbitrary, user defined. THP_AFG is a descendent of the TGPIB2 Object.

Table 2 Hewlett Packard AFG Object Summary

TCommandSet TBus TGPIB2 THP_AFG

Init Init Initialise Init
Zero_CommandSet Initialise Serial_poll NewFreq
Read_CommandSet Write_Command QuestionableData New Amp
Done Write_CommandSet StandardEvent readARB

SeriaLpoll Poll loadARB
trig Trigger loadARB_BIN
error DetermineTriggerSource
local AutoTrigger
Done Write_CommandSet

Done

Note: Bold indicates this method overwrites an inherited method.

4.1 Fields

WaveForm_ptr : AArb_File; :-Points to structure used to hold points for arbitrary
waveform.

WaveFileName : string[80]; :-Stores name of file holding arbitrary waveform
information.

ArbFile : text; .--File that holds arbitrary waveform information,

counter : integer; :-Number of points in arbitrary waveform.

trigger_source : string[5]; :-Stores trigger source;

burst_mode : string[3]; :- Stores burst mode;

file_found : boolean; :-If procedure ReadARB is unable to find ArbFile this field is set
to False.

4.2 Methods

Constructor Init(init_dev_name : nstring); :- Initialise object, initialise WaveForm_ptr.

procedure Write_CommandSet(i: integer); :-Writes the selected CommandSet (1-4) to
the instrument, sets WaveFilename.

procedure NewFreq(rate: real);:- Writes a new frequency to AFG. No range checking
implemented.

procedure NewAmp(Amplitude: real); :- Writes a new amplitude to AFG. No range
checking implemented.

procedure ReadARB; :-Reads arbitrary waveform from ArbFile to array pointed to by
WaveFile_ptr. If unable to find designated file sets fikjbund to false.

procedure loadARB; :- If fi.le_fou.nd is True loads information in array pointed to by
WaveFile_ptr into AFG in ASCII format (slow).

procedure loadARB_BIN; :- If fikjbund is True loads information in array pointed to
by WaveFile_ptr into AFG in binary format (fast).

procedure DetermineTriggerSource; :-Determines if a bus trigger is required. Stores
trigger source in trigger_source and burst mode in burstjnode. A bus trigger is required
when the AFG is bus triggered and in burst mode.

procedure AutoTrigger; :-Uses bus trigger if required. DetermineTriggerSource must be
used before this command so trigger type is known. Use this triggering procedure if
the trigger mode is unknown or not yet determined.

Destructor Done; :-Disposes of WaveForm_ptr, disposes of object.

5. Hewlett Packard 34401 DMM

Unit :-HP34401

THP_34401 provides fields and methods for use with the Hewlett Packard 34401
DMM. This instrument measures one signal at a time but can be used to record
minimums, maximums and averages. THP_34401 is a descendent of the TGPIB2
Object.

Table 3 Hewlett Packard 34401 DMM Object Summary

TCommandSet TBus TGPIB2

Init Init Initialise
Zero_CommandSet Initialise Serial_poll
Read_CommandSet Write_Command QuestionableData
Done Write_CommandSet StandardEvent

Serial_poll Poll
trig Trigger
error
local
Done

THP_34401

Init
Initialise
Read
OnCalculate
OffCalculate
SetMinMax
MinRead
MaxRead
AveRead
CountRead
trigger
DetermineTrigger
Source
AutoTrigger
Done

Note: Bold indicates this method overwrites an inherited method.

5.1 Fields

Quest_Enable : string[4]; :-Mask for Questionable Data Register.

trigger_source: string[5]; :- Stores trigger source.

5.2 Methods

Constructor Init(init_dev_name : nstring) :-Initialise object, initialise Quest_Enable.

procedure Initialise; :-Runs TGPIB.Initialise and sets Questionable Data Register mask.

10

function Read: io_string; :-Returns a reading from DMM. Reading must have been
triggered. Polls device for errors.

procedure SetMinMax; :-Sets DMM so it is able to do Minimum, Maximum and
Average functions.

procedure OnCalculate; :-Enables calculation function. Use procedure SetMinMax
first.

procedure OffCalculate; :-Disables calculation function.

function MaxRead: io_string; :-Returns Maximum reading from DMM. Readings must
have been triggered. Polls device for errors.

function MinRead: io_string; :-Returns Minimum reading from DMM. Readings must
have been triggered. Polls device for errors.

function AveRead: io_string; :-Returns Average reading from DMM. Readings must
have been triggered. Polls device for errors.

function CountRead: io_string; :- Returns number of readings in Maximum, Minimum
or Average reading from DMM. Polls device for errors.

procedure Trigger(bus_trigger : integer); :- Triggers DMM reading. If busjtrigger * 0
uses GPIB GET to provide trigger from bus.

procedure DetermineTriggerSource; :-Determines if a bus trigger is required. Stores
trigger source in trigger_source. A bus trigger is required when the DMM is in bus
triggered mode.

procedure AutoTrigger; :- Uses bus trigger if required. DetermineTriggerSource must
be used before this command so that the trigger type is known. Use this triggering
procedure if the trigger mode is unknown.

6. Hewlet Packard 3478 DMM

unit :-HP3478

THP_3478 provides fields and methods for use with the Hewlett Packard 3478 DMM.
This instrument measures one value at a time. THP_3478 is a descendent of the TBus
Object

11

Table 4 Hewlett Packard 3478 DMM Object Summary

TCommandSet TBus THP_3478

Init Init Init
Zero_CommandSet Initialise Read
Read_CommandSet Write_Command trigger
Done Write_CommandSet poll

Serial_poll error
trig
error
local
Done

Note: Bold indicates this method overwrites an inherited method.

6.1 Methods

Constructor Init(init_dev_name : nstring); :-Initialise object.

function Read: io_string; :-Returns a reading from DMM. Reading must have been
triggered. Polls device for errors. Checks for over value error.

procedure Trigger; :-Triggers DMM reading.

procedure poll; :-Uses result from serial poll to report on errors

procedure error; :-Reports over value errors (Private).

7. Fluke 8840 DMM

unit :-F8840

TFJ8840 provides fields and methods for use with the Fluke 8840 DMM. This
instrument measures one value at a time. TF_8840 is a descendent of the TBus Object.

12

Table 5 Fluke 8840 DMM Object Summary

TCommandSet TBus TF.8840

Init Init Init
Zero_CommandSet Initialise Read
Read_CommandSet Write_Command trigger
Done Write_CommandSet poll

Serial_poll error
trig
error
local
Done

Note: Bold indicates this method overwrites an inherited method.

7.1 Methods

Constructor Init(init_dev_name : nstring); :-Initialise object.

function Read: io_string; :-Returns a reading from DMM. Reading must have been
triggered. Polls device for errors. Checks for over value error.

procedure Trigger; :-Triggers DMM reading.

procedure poll; :-Uses result from serial poll to report on errors

procedure error; :-Reports over value errors (Private).

8. Tektronix 8150 TSI

unit:- TEKTSI

TTek_TSI provides fields and methods for use with the Tektronix 8150 Test System
Interface with the low level scanner card. The test system provides the capability to
multiplex up to 60 channels. No dialog boxes are provided for this instrument as in
normal usage it is easier to cycle through the switches using a simple loop with the
methods provided in this object. These routines only use the TSI in the immediate
mode. TTekJTSI is a descendent of the TBus Object.

Table 6 Tektronix 8150 TSI Object Summary

TCommandSet TBus TTekTSI

Init Init Init

13

Zero_CommandSet Initialise Initialise
Read_CommandSet Write_Command poll
Done Write_CommandSet CloseSwitch

Serial_poll OpenSwitch
trig CloseAll
error OpenAll
local error
Done

Note: Bold indicates this method overwrites an inherited method.

8.1 Methods

Constructor Init(init_dev_name: nstring) :-Initialise object.

procedure Initialise; :-Initialises instrument, sets trigger mode.

procedure poll; :-Calls error procedure on abnormal bit.

procedure CloseSwitch(card: string3; switch: string3); :-Qoses the selected switch on
the designated card. Card is set to the value Card[i] where i has a value of 1-3. Switch is
set to a value SwitchA[i] or SwitchB[i] where i has a value of 1-10. The constant arrays
card, SwitchA and SwitchB axe defined in this unit.

procedure OpenSwitch(card: string3; switch: string3); :-Opens the selected switch on
the designated card. See CloseSwitch for details On variables.

procedure CloseAll(card: string3); :-Closes all the switches on the designated card. See
CloseSwitch for details on variables.

procedure OpenAll(card: string3); :-Opens all the switches on the designated card. See
CloseSwitch for details on variables.

9. Units

The software for controlling the instruments is in a series of units. Listed below are the
contents of these units including the other units they use, variable types, objects and
some of the procedures and functions (non object). Listed under the uses heading are
the non standard Pascal units, see the source code for a full listing.

9.1 Variable.pas

This unit provides commonly used variable types to the other units,

const :-maxibuf = $FF;

minibuf = $20;
Extra_String_Length = 20;

Type :- nstring = string[7];
io_buf = array[l..maxibuf] of char;
command = minibuf;
long_command = string[maxibuf];

9.2 Message.pas

This unit provides dialog boxes for information to be written to the screen,

uses :-Variable;

procedure Write_Message(Line_Qne/ Line_Two : io_string); :-Writes LineJDne and
LineJTwo to screen. Dialog box closed by operator.

procedure Write_Message_Three(Line_One, LineJTwo, Line_Three : io_string); :-
Writes LineJDne, Line_Txvo, and Line _Three to screen. Dialog box closed by operator.

function Get_Reply(Line_One : io_string) : boolean; :-Writes LineJDne to screen,
returns operators response to a True / False query.

procedure Open_Message(Line_One, Line_two : io_string); :-Writes LineJDne and
LineJTwo to screen. Dialog box closed by Close_Message.

procedure Update_Message(Line_One, LineJTwo : io_string); :-Writes LineJDne and
LineJTwo to dialog box created by OpenJVLessage, overwrites previous LineJDne and
LineJTwo.

procedure Close_Message; :-Closes dialog box created by OpenJAessage.

9.3 tpdecLpas

This unit contains software routines provided with the National Instruments GPIB
card. See Manual for further information!!].

9.4 GPIBwrtpas

This unit provides basic GPIB read and write procedures. These procedures are
developed from the National Instrument procedures provided in tpdecLpas.

uses:- Variable;
Message;
tpdecl;

15

function find_pri(name : nstring): integer; :-Determines primary address of instrument
on GPIB bus and returns address as integer, name is the device identifier.

procedure ibwrite(addrl: integer; incomm: command); :-Writes instruction in incomm
to instrument on the GPIB address addrl after removing any spaces from incomm.

procedure ibwrites (addrl : integer; incomm : command); :-Writes instruction in
incomm to instrument on the GPIB address addrl.

procedure ibwrite_long(addrl : integer; long_incomm : long_command); :-Writes
instruction in longjncomm to instrument on the GPIB address addrl.

procedure ibread(addrl : integer; var data : io_string; count: integer); :-Reads count
characters from instrument at GPIB address addrl into data.

9.5 Ins_Obje.pas

This unit contains a data structure used by the instrument control objects and two
instrument control objects. A procedure for determining the presence of a file is also
included.

uses:- Variable;
GPIBwrt;
tydecl;
message;

type :- PollArray = array[0..7] of boolean;

Objects:- TCommandSet;
TBus(TCommandSet);

function FileExists(FileName : io_string) : boolean; :-Checks existence of file of string
as designated by FileName.

9.6 GPIB2INS.pas

This unit provides software for use with instruments with a IEEE 488.2 Bus.

const:- Operation_Complete : string[4] = '*OPC;
Clear_Serial_Poll: string[4] = '*CLS';

uses:- Variable;
tpdecl;
GPIBwrt;
ins_obje;

16

object:- TGIPB2(TBus);

9.7 TekCRO.pas

This unit provides software directly concerned with operation of the Tektronix CRO.

uses:- Variable;
tpdecl;
GPIBwrt;
ins_obj;
GPIB2INS;

type:- Trace_Record; :-See source code for details;
SubSelect: array[1..4] of Boolean;

objects:- TTek_CRO(TGPIB2);

9.8 HPAFG.pas

This unit provides software directly concerned with operation of the Hewlett Packard
AFG.

uses:- Variable;
tpdecl;
GPIBwrt;
ins_obj;
GPIB2TNS;

const:- Arb_array_size = 8191;

type :- Arb_array = array[O..Arb_array_size] of integer;

objects:- HP_AFG(TGPIB2);

9.9 HP34401.pas

This unit provides software directly concerned with operation of the Hewlett Packard
34401 DMM.

uses:- Variable;
tpdecl;
GPIBwrt;
ins_obj;
GPIB2INS;

const:- array_size = 100;

17

objects:- HP_34401(TGPIB2);

9.10 HP3478.pas

This unit provides software directly concerned with operation of the Hewlett Packard
3478 DMM.

uses:- Variable;
tpdecl;
GPIBwrt;
ins_obj;

objects:- HP_3478(TBus);

9.11 F8840.pas

This unit provides software directly concerned with operation of the Fluke 8840 DMM.

uses:- Variable;
GPIBwrt;
ins_obj;

objects:- TF_8840(TBus);

9.12 TekTSLpas

This unit provides software directly concerned with operation of the Tektronix 8150
Test Interface System.

uses:- Variable;
tpdecl;
GPIBwrt;
ins_obj;

const:- card : array[1..3] of string3 = ('Fl', 'F2', 'F3');
switchA[1..10] of string3 = ('Al', 'A2', ,'A9', A10');
switchB[1..10] of string3 = ('Bl', 'B2', ,'B9', BIO');

objects:- TTek_TSI(TBus);

18

10. Example

The following is an example of a program that uses the object TTek_CRO to set up a
Tektronix CRO to acquire the selected traces and record them to file. The settings of the
CRO may be changed using the dialog boxes without changing the program.

unitCROTest;

interface

uses crt, gpibwrt, variable, message, TekCRO;

procedure Tek_CRO_Test(init_dev_name: nstring);

implementation
{ }

procedure Tek_CRO_Test(init_dev_name: nstring);
{**** TESTS COMMANDS WRITTEN TO THE Tek CRO****}

var
i,j: integer;
Tek_CRO_ptr: PTek_CRO; {POINTER TO INSTANCE OF OBJECT}
temp_string_one: io_string;
temp_string_two: io_string;

begin
{CREATES INSTANCE OF OBJECT TTek_CRO}

Tek_CRO_ptr :=New(FTek_CRO, init(init_dev_name)):
Open_Message('Initilising CRO',");

{INSTRUMENT RETURNED TO DEFAULT SETTINGS, GPIB ADDRESS FOUND}
Tek_CRO_ptrA.Initialise;
Tek_CRO_ptrA.Read_CommandSet; {READ ALL COMMANDSETS}

{CommandSet[l] WRITTEN TO INSTRUMENT}
Tek_CRO_ptrA.Write_CommandSet(l);
Tek_CRO_ptrA.poU; {CHECK INSTRUMENT}
Update_Message('Acquiring Data',");
Tek_CRO_ptrA.Start_Acquire; {START ACQUIRING DATA}
delay(2000); {WAIT WHILE DATA OBTAINED}
Tek_CRO_ptrA.Stop_Acquire; {STOP ACQUIRING DATA}
Tek_CRO_ptrA.Read_Trace; {READ TRACE FROM CRO}
Tek_CRO_ptrA.poU; {CHECK INSTRUMENT}
Update_Message('Storing Data',");
Tek_CRO_ptrA.StoreTrace; {SAVE DATA TO TRACEFILENAME[0]}

19

Tek_CRO_ptrA.Local; {RETURN CRO TO FRONT PANEL
CONTROL}
Dispose(Tek_CRO_ptr, Done); {DISPOSE OF OBJECT}
Close_Message;

end;
{ }
end.
Examples of programming other instruments are available in the procedures used to
test the commands sent to the instruments from the dialog boxes. (AFGTest.pas and
DMMTestpas)

11. Dialog Boxes

The dialog boxes provide the means to enter device settings. Each device has from one
to four dialog boxes, depending on the number of parameters required by the device.
After checking the settings derived from the dialog boxes for errors, a conversion of
the data into a string format occurs. This string contains the instructions for the
instrument. The CommandSet file for the specified device is then modified to allow for
the new commands. Instances and descendants of TCommandSet may read the
CommandSet file using the ReadjCommandSet method. A facility to test the commands
in the CommandSet file for each individual instrument independent of any major test
routine exists on the main menu.

The following section is an outline of the dialog boxes used in the instrument
controller. An understanding of this section is not necessary to use the instrument
controller only to enter new instruments and their dialog boxes. All the dialog boxes in
this controller are descendants of the Turbo Vision object TDialog. The object TManager
is used as the base on which to construct the objects that handle the Dialog boxes and
the checking and saving of the data obtained from the dialog boxes. Objects from the
Turbo Vision package are the basis for this menu system. Below is an outline of
TManager.

11.1 TManager

Unit :-Dia_Obje

This object provides the basic managers used by the Instrument Screens to obtain,
check and save Instrument Instructions.

11.1.1 Fields

dev_name : nstring; :-Device identifier.

20

screenno : byte; ^Indicates if this is the 1..4 dialog box for the device. Used in
determining where the settings will be stored in the CommandSet.

save_position; -.-Determines if the Instrument Instructions will be saved in
CommandSet I.A.

CommandJJne; :-Holds the Instrument Instructions to be saved by Save_CommandSet.
CommandJLine is obtained from RecordJoJString.

11.1.2 Methods

constructor init(xscreen : byte; init_dev_name : nstring); :-Initialises object, screen_no
and dev_name. xscreen is used to set screen_no and init_dev_name to set devjtame.

function record_to_string : io_string; virtual; :-An empty routine that is over written
by each descendent. In the descendent objects this function converts record
information returned by the dialog boxes into string information to be saved on file by
savejCommandSet.

procedure save_CommandSet; virtual; :-Writes commands to CommandSet file,

destructor Done; virtual; :-Disposes of object.

The software for each dialog box is in a separate unit. Below is a list of the instrument
type and the corresponding unit.

Table 7 - Dialog Box Software Units

Instrument
TekTDS420CRO
TekTDS420CRO
TekTDS420CRO
TekTDS420CRO
HP33120AAFG
HP 33120A AFG
HP 33120A AFG
HP 34401 DMM
HP3478DMM
Fluke 8840 DMM

Object Unit
TCRODialog_One(Tmanager) CRODiall
TCRODialog_Two(Tmanager) CRODial2
TCRODialog_Three(Tmanager) CRODiaB
TCRODialog_Four(Tmanager) CRODial4
TFunction_Manager(TManager) HP_AFGD1
TParameter_Manager(TManager) HP_AFGD2
TArbitrary_Manager(TManager) HP_AFGD3
THP34401_Manager(TManager) HP34401D
THP3478_Manager(TManager) HP3478D
TF8840_Manager(TManager) F8840D

Each of the objects listed above has a pointer to the object of the same name except a
"P" replaces the first letter "T".

In addition to the object, the units contain code to write the input boxes (ie. radio
buttons, check boxes and input lines) onto the dialog boxes. It is necessary to read the

21

Turbo Vision Programming Guide[2] to understand the code that creates the input
boxes.

In the interface section of each unit there is one procedure, this procedure when called
creates the dialog box for the designated device type with the specified identifier.
Listed below are the procedures that create dialog boxes and the instrument types the
dialog box is for.

Table 8 - Dialog Box Procedures

Instrument Procedure

TekTDS420CRO

HP33120AAFG

HP 34401 DMM
HP3478DMM
Fluke 8840

CRODialog_screenOne(init_dev_name:
nstring)
CRODialog_screenTwo(init_dev_name:
nstring)
CRODialog_screenThree(init_dev_name:
nstring)
CRODialog_screenFour(init_dev_name:
nstring)
HP_AFGDialog_Function(init_dev_name:
nstring)
HP_AFGDialog_Parameter(init_dev_name:
nstring)
HP_AFGDialog_Arbitrary(init_dev_name:
nstring)
HP34401Dialog(init_dev_name: nstring);
HP3478Dialog(init_dev_name: nstring);
F8840Dialog(init_dev_name: nstring);

Unit

CRODiall

CRODial2

CRODiaB

CRODiaM

HP_AFGD1

HP_AFGD2

HP_AFGD3

HP34401D
HP3478D
F8840D

In order to create the second Tek TDS 420 CRO Dialog box, for a Tek TDS 420 CRO
with a device identifier "DEVI" the following line of code would be written

CRODialog_ScreenTwo("DEVl");

After calling this code, provided the user did not cancel the box or abandon the data,
the command file for "DEVI" will be updated to the new settings.

12. Main Menu

The file Insmenue.pas contains the software that provides the menus and desktop that
the other units use. The menu controls the creation of the dialog boxes that enter
information into the CommandSets and the execution of test procedures. The desktop

22

provides the surface where the dialog boxes and messages are displayed. The
Insmenue program is a product created from Turbo Vision package. As such it is
necessary to refer to the Turbo Vision programming guide [2] to follow the code. Help
is available for most commands by using the Fl key.

13. Reference

1. NI-488 Functions for Turbo Pascal. July 1990 Edition. National Instruments
Corporation. Part Number 320014-12.

2. Turbo Vision Version 2.0. Programming Guide. Borland International, 1992

23

DSTO-GD-0156

Appendix A Software Design Information

This appendix shows a data flow diagram that was used in the prototype of the control
sweet for the first instrument, the Tektronix TDS420 CRO.
Although variable names and object names have changed the data flow and structure
remain the same.

DFD of Instrument Controller Suite For Tek CRU

Selected Command Line
Reset THgger Command

Prompt for Trace Data

Prompt For Status

Trace Data In

CRn_Status_Byte

Trace Data Dut

Trace Filename

Range Error
Filename Query
Prompt Trace Filename
Horizontal Picklist
Vertical Picklist
Trigger Picklist

Reply to Filename Query
Trace Filename
Horizontal Settings
Vertical Settings
Trigger Settings

CRO Instrument Dbject

Abnormal Event Message

Instrument Method

Get Instrument Instructions

Device File

Request for Method

Test Proceedure -> Test^Result

Figure Al - Data flow diagram for Tek TDS 420 CRO

25

DISTRIBUTION LIST

Software Instrument Control Suite

David Clarke

AUSTRALIA

DEFENCE ORGANISATION

S&T Program
Chief Defence Scientist I
FAS Science Policy \ shared copy
AS Science Corporate Management J
Director General Science Policy Development
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Director General Scientific Advisers and Trials/Scientific Adviser Policy and

Command (shared copy)
Navy Scientific Adviser
Scientific Adviser - Army (Doc Data Sheet and distribution list only)
Air Force Scientific Adviser
Director Trials

Aeronautical and Maritime Research Laboratory
Director
Chief of Maritime Operations Division

D. Richardson
F.May
A. Theobald
B. Jessup
David Clarke

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library Salisbury (2 copies)
Australian Archives
Library, MOD, Pyrmont
Library, MOD, HMAS Stirling

Capability Development Division
Director General Maritime Development: Att DD Mine Warfare
Director General Land Development (Doc Data Sheet only)
Director General C3I Development (Doc Data Sheet only)

Navy
SO Science, Maritime HQ, MHQ (Doc Data Sheet only)
MWSCPD
CO HMAS Waterhen

Army
ABCA Office, G-l-34, Russell Offices, Canberra (4 copies)
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet

only)
NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool

Military Area, NSW 2174 (Doc Data Sheet only)

Intelligence Program
DGSTA Defence Intelligence Organisation

Corporate Support Program (libraries}
OIC TRS, Defence Regional Library, Canberra
Officer in Charge, Document Exchange Centre (DEC), 1 copy
*US Defence Technical Information Center, 2 copies
*UK Defence Research Information Centre, 2 copies
"Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University

OTHER ORGANISATIONS

NASA (Canberra)
AGPS

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (10 copies)

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2 TITLE

Software Instrument Control Suite

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document
Tide
Abstract

(U)
(U)
(U)

4. AUTHOR(S)

David Clarke

5. CORPORATE AUTHOR

Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001

6a. DSTO NUMBER
DSTOGD-0156

6b. AR NUMBER
AR-010-355

6c. TYPE OF REPORT
General Document

7. DOCUMENT DATE
October 1997

8. FILE NUMBER
510/207/0788

9. TASK NUMBER 10. TASK SPONSOR
DGMD

11. NO. OF PAGES
26

12. NO. OF
REFERENCES
2

13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

Chief, Maritime Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFHCE,
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

computer software, instrumentation, programming

19. ABSTRACT

The use of computers to control instrumentation can provide improvements in quality, quantity and turn
around time of work carried out by a laboratory. These improvements must be balanced against the time
taken to write the programs that control the instruments. This work documents a library of instrument
control routines used to facilitate the task of programming and to enable the full advantage of computer
controlled instrumentation to be realised.

Page classification: UNCLASSIFIED

